三角函数中考数学考试知识点分析

锐角三角函数定义

三角函数中考数学考试知识点分析

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90-)=cos,cos(90-)=sin,

tan(90-)=cot,cot(90-)=tan。

平方关系:

sin^2()+cos^2()=1

tan^2()+1=sec^2()

cot^2()+1=csc^2()

积的关系:

sin=tancos

cos=cotsin

tan=sinsec

cot=coscsc

sec=tancsc

csc=seccot

倒数关系:

tancot=1

sincsc=1

cossec=1

锐角三角函数公式

两角和与差的三角函数:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

三角和的三角函数:

sin(++)=sincoscos+cossincos+coscossin-sinsinsin

cos(++)=coscoscos-cossinsin-sincossin-sinsincos

tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

辅助角公式:

Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B

倍角公式:

sin(2)=2sincos=2/(tan+cot)

cos(2)=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()

tan(2)=2tan/[1-tan^2()]

三倍角公式:

sin(3)=3sin-4sin^3()

cos(3)=4cos^3()-3cos

半角公式:

sin(/2)=((1-cos)/2)

cos(/2)=((1+cos)/2)

tan(/2)=((1-cos)/(1+cos))=sin/(1+cos)=(1-cos)/sin

降幂公式

sin^2()=(1-cos(2))/2=versin(2)/2

cos^2()=(1+cos(2))/2=covers(2)/2

tan^2()=(1-cos(2))/(1+cos(2))

万能公式:

sin=2tan(/2)/[1+tan^2(/2)]

cos=[1-tan^2(/2)]/[1+tan^2(/2)]

tan=2tan(/2)/[1-tan^2(/2)]

积化和差公式:

sincos=(1/2)[sin(+)+sin(-)]

cossin=(1/2)[sin(+)-sin(-)]

coscos=(1/2)[cos(+)+cos(-)]

sinsin=-(1/2)[cos(+)-cos(-)]

和差化积公式:

sin+sin=2sin[(+)/2]cos[(-)/2]

sin-sin=2cos[(+)/2]sin[(-)/2]

cos+cos=2cos[(+)/2]cos[(-)/2]

cos-cos=-2sin[(+)/2]sin[(-)/2]

推导公式:

tan+cot=2/sin2

tan-cot=-2cot2

1+cos2=2cos^2

1-cos2=2sin^2

1+sin=(sin/2+cos/2)^2

其他:

sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0

cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及

sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

函数名正弦余弦正切余切正割余割

平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有

正弦函数sin=y/r

余弦函数cos=x/r

正切函数tan=y/x

余切函数cot=x/y

正割函数sec=r/x

余割函数csc=r/y

正弦(sin):角的对边比上斜边

余弦(cos):角的邻边比上斜边

正切(tan):角的对边比上邻边

余切(cot):角的邻边比上对边

正割(sec):角的斜边比上邻边

余割(csc):角的斜边比上对边

三角函数万能公式

万能公式

(1)(sin)^2+(cos)^2=1

(2)1+(tan)^2=(sec)^2

(3)1+(cot)^2=(csc)^2

证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=-C

tan(A+B)=tan(-C)

(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=n(nZ)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

万能公式为:

设tan(A/2)=t

sinA=2t/(1+t^2)(A+,kZ)

tanA=2t/(1-t^2)(A+,kZ)

cosA=(1-t^2)/(1+t^2)(A+,且A+(/2)kZ)

就是说都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。

三角函数关系

倒数关系

tancot=1

sincsc=1

cossec=1

商的关系

sin/cos=tan=sec/csc

cos/sin=cot=csc/sec

平方关系

sin^2()+cos^2()=1

1+tan^2()=sec^2()

1+cot^2()=csc^2()

同角三角函数关系六角形记忆

构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的'三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(+)=sincos+cossin

sin(-)=sincos-cossin

cos(+)=coscos-sinsin

cos(-)=coscos+sinsin

tan(+)=(tan+tan)/(1-tantan)

tan(-)=(tan-tan)/(1+tantan)

二倍角的正弦、余弦和正切公式

sin2=2sincos

cos2=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()

tan2=2tan/(1-tan^2())

tan(1/2*)=(sin)/(1+cos)=(1-cos)/sin

半角的正弦、余弦和正切公式

sin^2(/2)=(1-cos)/2

cos^2(/2)=(1+cos)/2

tan^2(/2)=(1-cos)/(1+cos)

tan(/2)=(1cos)/sin=sin/1+cos

万能公式

sin=2tan(/2)/(1+tan^2(/2))

cos=(1-tan^2(/2))/(1+tan^2(/2))

tan=(2tan(/2))/(1-tan^2(/2))

三倍角的正弦、余弦和正切公式

sin3=3sin-4sin^3()

cos3=4cos^3()-3cos

tan3=(3tan-tan^3())/(1-3tan^2())

诱导公式

诱导公式的本质

所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。

常用的诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等:

sin(2k)=sinkz

cos(2k)=coskz

tan(2k)=tankz

cot(2k)=cotkz

公式二:设为任意角,的三角函数值与的三角函数值之间的关系:

sin()=-sin

cos()=-cos

tan()=tan

cot()=cot